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ABSTRACT

Airglow from gamma band resonance fluorescence of nitric oxide near 255 nm is calculated at

several solar zenith angles. Data from the Nimbus 4 BUV wavelengths 273.5 to 287.6 nm is used to

estimate the rayleigh and ozone scattering contributions to the BUV 255.5 nm data and the remaining

signal is attributed to NO airglow. The low solar zenith angle contributions by NO is less than 0.5%,

and the high latitude/high zenith angle contribution exceeds 5%. This technique allows for estimating

NO content above about 50 km, as well as partitioning that content between the mesosphere and

thermosphere.

ooo

111





CONTENTS

Pagc

ABSTRACT ................................................ iii

INTRODUCTION ............................................ 1

COMPUTATIONAL MODEL ..................................... 3

DATA ANALYSIS ........................................... 7

CONCLUSIONS AND DISCUSSION ................................. 8

ACKNOWLEDGMENTS 10

REFERENCES ............................................... 1 1





A TECHNIQUE FOR DETERMINING DAYTIME ATMOSPHERIC

NITRIC OXIDE FROM BACKSCATTERED ULTRAVIOLET MEASUREMENTS

INTRODUCTION

Nitric oxide in the thermosphere and upper mesosphere has been investigated using both rocket

and satellite measurements to study the D and E region ionosphere. NO in the lower mesosphere and

stratosphere has received increased interest recently because it is active in catalytic destruction of

ozone.

Measurements of NO in the middle atmosphere have been performed from balloon and rocket

platforms.

Previous satellite studies of NO have measured airglow at 215 nm and interpreted the results in

terms of NO gamma band resonance fluorescence• Difficulty in interpreting the rayleigh scattering

contributions to the total 215 nm signal have limited these investigations to near terminator solar

conditions for nadir observations and to observations in the thermosphere for horizon scanning ob-

servations. A new technique to observe nitric oxide related airglow is presented in this paper.

Accompanying NO gamma band 215 nm resonance fluorescence is radiation at 255.1 nm which

is about 25% as intense as the 215 nm feature• Airglow at this wavelength is measured in the nadir by

the Backscattered Ultraviolet (BUV) spectrometers in one of 8 discrete wavelength positions used for

obtaining atmospheric ozone profiles. The amount of light expected at 255 nm from a pure ozone-

rayleigh scattering atmosphere can be accurately determined from the remaining 7 BUV prof'ding

wavelengths (273.5 to 305.8 nm), and the excess 255 nm radiation can then be interpreted in terms

of nitric oxide resonance fluorescence• This technique provides a measurement of the NO content
i

above 50 km for solar zenith angles above 30°.

BUV measurements (Heath et al., 1973) are available from two sun synchronous Nimbus sat-

ellites and a low inclination Atmosphere Explorer satellite• For the AE device which achieves a full



range of solar zenith angles in the latitude interval +20 ° to -20 °, the excess 255.5 nm albedo is nearly

constant at 5% and is attributed to an unknown solar zenith angle independent effect. For the

Nimbus 4 and 7 measuring devices the minimum excess albedo is achieved at low solar zenith angles

which coincide with low latitudes and amounts to about 5% of the measured values. For high solar

zenith angles which are obtained at high latitudes the excess albedo scan has exceeded 15% in some

instances,

The contribution to the BUV 255 nm data is calculated and shown to be inadequate to, produce the

mean 5% bias at low latitudes, but capable of explaining at least most of the latitude dependent

255.5 nm excess albedo observed with the Nimbus devices. A typical (mid-latitude) NO profile from

160 to 20 km is defined based on rocket measurements of NO and the airglow from resonance fluo-

rescence for several solar zenith angles is calculated. A hypothetical latitude dependent NO contri-

bution is then estimated based on satellite derived latitudinal variations in thermospheric NO and the

resulting airglow is shown to be similar to the latitude variation in excess 255.5 nm albedo. A simple

technique to determine the excess albedo from each BUV scan based on a Laplace Transformation

inversion is used to provide a direct interpretation of the excess latitude dependent albedo in terms

of NO content above 50 km. The computational model together with published thermospheric nitric

oxide measurements for 1974 provide a way to identify separately the thermospheric and meso-
? , • •

spheric amounts. The BUV shortest wavelength albedos interpreted in this way imply substantial

latitude variability in mesospheric NO content with enhancements at 60 ° latitude and above up to a

factor of 5 over typical mid-latitude content. Variations in mesospheric NO of this magnitude could

have a significant impact on the ozone chemistry in the upper stratosphere where NO catalysis pro-

vides the major chemical sink for 03.

The use of this technique on the Nimbus 4 and 7 BUV data base would provide a nearly com-

plete measure of the NO content above 50 km from the earlier launch in April ,1970 through the

operating phase of Nimbus 7 which was launched in November 1978.



COMPUTATIONAL MODEL

Airglow at 255.1 nm can be produced by resonance fluorescence of nitric oxide in the

gamma bands, where the primary feature is at 215nm and the main secondary feature is at

255.1 nm. NO in the X2 II (v = 0) ground state is excited to the A2_+(v = 1) state by absorption

of a 215 nm photon. The primary deexcitation of the v = I state is fluorescence back to the

ground state. For an optically thin atmosphere, this process has an emission rate factor gv'v 't,

with gl0 = 7.69 x 10-6 photons/molecule--s. The second brightest feature of the gamma bands

is the transition to the v = 4 level of the X2rl state, yielding photons near 255.1 nm with an emis-

sion rate factor g14 = 1.87 x 10-6 photons/molecule--s (Barth, 1965). The 215nm feature has

been studied on several occasions, including rocket measurements (Barth, 1964) and two satellite

measurements (see Rusch, 1973 and Stewart and Cravens, 1978). The 255.1nm feature was also

detected on the rocket measurement of Barth (1964)andthe Ogo 4 measurement of Rusch (1973)

but in neither case was this feature used to infer atmospheric NO content.

In this work, a model atmosphere including the neutral atmosphere, 02, O3 and NO has been

constructed and used to estimate the contamination to 255.5 nm albedo by NO resonance fluores-

cence as a function of solar zenith angle. These calculations are also used to define the atmospheric

NO content for a set of Nimbus 4 derived excess albedo values for the week 7-13 August 1970.

Figure 1 summarizes this model. The total optical depth, the optical depth for absorption

from nitric oxide, molecular oxygen and ozone as well as Rayleigh scattering from the neutral

atmosphere are shown as a function of altitude for 0° solar zenith angle. The neutral atmosphere

is from the U.S. Standard Atmosphere, 1976 with a rayleigh scattering coefficient of 2.48 x 10-25

cm 2 molecule -i at 215nm (Allen, 1955). The ozone profile is the Krueger-Minzner Mid-Latitude

Model (Krueger and Minzner, 1976) and the effective absorption coefficient at 215nm was taken

to be 1.0 x 10-18cm2 molecule -1 (Ackerman, 1971). A value of 9.4 x 10-18cm 2 molecule -1 was

adopted for the absorption coefficient at 255nm (Inn and Tanaka, 1953). 02 here was assumed

to comprise a uniform 20% of the atmosphere with an effective absorption coefficient at 215 nm



of 7.94 x 10-24 cm 2 molecule -1 (Ackerman, 1971). The nitric oxide altitude distribution is shown

in Figure 2 as the solid curve. The model shows a peak of 5 x 107 cm-3 at 105 km and a sharp

minimum in concentration of 8 x 106cm -3 at 85km (adopted from Meira, 1971). The nitric

oxide concentration in the lower mesosphere is adopted from Horvath and Mason (1979), and

the profiles are made to be continuous between 70 and 60km. i

This model atmosphere is being used for calculating an integrated photon flux scattered to

the top of the atmosphere and discontinuities in the first derivative of model NO profiles will

have no effect on the results of this study. The X's in the figure show the profile between 70

and 20km from McEkoy et al., (1974) and are provided for comparison purposes. Two addi-

tional NO profiles above 70km are shown as broken lines. These profiles are for NO peak con-

centrations of 1 x 107 and 8 x 107cm -3 at 105kin, with all other values above 70km scaled

linearly from the 5 x 107cm -3 (105kin) profile. The range of 1 to 8 x 107cm -3 at the NO peak

covers the typical zonal mean concentration reported from satellite observations in 1974 (Stewart

and Cravens, 1978 and Cravens and Stewart, 1978). The emission rate factor adopted here is an

effective value for the 1-4 transition of the gamma band. The 1-0 transition of the gamma band

has been calculated in detail by Pearce (1969). That calculation shows that the transition is com-

prised of many rotational lines, with the absorption cross-section at the center of several of the

rotational lines 50 to 100 times greater than the effective cross-section. For solar zenith angles

up to about 75 °, with modest path lengths through the atmosphere, the slant NO optical depth i

will be sufficiently small so that the effective emission rates of gl0 and g14 will hold. For higher i
F

solar zenith angles the optical depth at the peak of the various rotational lines will become large

and the flux transmitted will be differentially depleted at the center of the rotational lines. For

these cases the effective emission rates gl0 and g 14 will decrease with altitude. Transmission by the

atmosphere at 215nm has been Separated from gv'v" for small optical depths of NO in this calculation.

Equations 1 and 2 def'me the amount of light scattered to the top of the atmosphere by NO

through resonance fluorescence.
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LNO(k) = / e(z,X)dz = _ en(X) (1)
do n=l

where

LNO is in units of ergs/cm2-s--str,

e(z,_) is the differential contribution function for resonance fluorescence emitted at wavelength X,

en(X) is the contribution function for the n-th layer emitted at wavelength X.

1

en(X) = _'_ Nn(NO) " [gv'v"" Tz(0' 215nm)] • Tz(0,k ) = _'n(k) Tz(0,k ) (2)

and

_'n(k) is the emission rate from layer n,

Tz (0,k) is the transmission by the atmosphere in the vertical above the altitude z for the n-th layer

at wavelength h,

Nn(NO ) is the vertical content of NO molecules in the n-th layer,

gv,v,, =gl0 fork = 215 nm and g14 fork = 255.1 rim,

Tz(0, 215 nm) is the transmlsston of incoming light to layer n at altitude z for a solar zenith

angle 0 at 215nm which excites the NO molecule to the A22;+(v = 1) state.

These equations are for single scattering and observation of the radiation in the nadir from

the top of the atmosphere. Computationally Tz(0 , 215) is relatively unimportant for z >t 50km,

the altitude at which ozone absorption becomes the prime atmospheric attenuation process, and

is increasingly under the control of 03 absorption below this altitude. Tz(0, 255.1) becomes

important near 60km and also is due exclusively to ozone absorption. The calculations were

performed to near 40km and the atmosphere was divided into 51 layers. Layer 1 is comprised of

the atmosphere above 70km, and all other layers are 2km thick, extending from 70 to 20km.

Figures 3 (a--d) show the 255.1 nm contribution function at solar zenith angles of 0, 60°,

70.5 ° and 78.5 ° respectively for each of the layers as well as the integrated amount of light

reaching the top of the atmosphere originating at or above each layer at 255.1 and 215 nm for

5



the model atmosphere defined in Figure 1. The values for each layer are plotted at the bottom

of the layer. Below 40km ozone becomes highly absorbing at 255.1 nm and although 215nm

light has appreciable penetration to this altitude the airglow at 255nm is absorbed within 1 ozone

scale height of where it is emitted.

Detailed computations for several solar zenith angles are included as simple computational

aids for extrapolating from this model atmosphere to an atmosphere with a different concentra-

tion at the 105km peak. In all cases in this model for NO invariant at 60km the contribution

function at and below 60km is a function only of the solar zenith angle (due to attenuation in

the T(0,215) term); the 255.1 nm flux originating between 70 and 60km represents about 4%

of the total NO flux contribution and can be easily scaled (Figure 2) to the concentration at 60

and 70km.

Figure 4 shows the solar zenith angle dependence of this resonance fluorescence mechanism

for 0° to 80 °. Above 80 ° g should be replaced by g(z). The open circles are the photon fluxes

for 215nm and must be referred to the left ordinate scale. The right side ordinate scale is the

radiance at 255.7 nm which is implied by the 255.1 nm photon flux when detected by an instru-

ment with a 1nm triangular slit function with the centroid of the instrument bandpass 0.6nm

longer in wavelength than the 255.1 nm radiation -this describes the "255.5nm" channel of the

Nimbus 4 Backscattered Ultraviolet (BUV) Spectrometer. The X's in this Figure show the meas-

ured 255.7 nm radiation at several solar zenith angles from the Nimbus 4 BUV for a typical orbit, in

this case 2 August 1972. This figure clearly shows that the radiation from this model atmosphere

with the same NO profile at all latitudes is less than 1% of the total 255.5 nm radiation at low solar

angles, and that the percent contribution from NO to the total radiation increases with increasing

solar angle. The actual solar zenith angle dependence of the percent contribution of NO signal

to the total BUV measurements is stronger than implied in this Figure; Cravens and Stewart (1978)

have shown that the typical 105km NO peak concentration is near 1 x 107 cm-3 at low latitudes

and 8 x 107cm -3 at high latitudes. Since the Nimbus 4 satellite is sun synchronous with a near



local noon equator crossing, we can relate low solar angles to low latitudes and high solar angles to

high latitudes. For an NO latitude distribution where the thermospheric content varies as observed

by Cravens and Stewart (1978), with a minimum at 0° solar zenith angle and a maximum at 70 ° the

NO airglow contamination will grow from 0.3% to 5%.

DATA ANALYSIS

The computation has been reversed and the entire latitude dependent excess albedo has

been interpreted as resonance fluorescence from NO for the Nimbus 4 data from 7-13 August

1970. A Laplace transform inversion has been applied to this data using the 273.5,283.0 and

287.6nm measurements to determine the ozone altitude profile'in the region of the atmosphere

where multiple scattering is unimprotant. The constraint for this inversion is that near the strato-

pause the ozone overburden above a pressure level p can be described as

Xp = Cp l/o (3)

where o is the ratio of the ozone scale height to the atmospheric scale height and C is the cumul-

ative ozone above one millibar. Initial application of this technique to study BUV albedos was

performed by Mateer (1972) and is currently used by McPeters (1979). By defining the quantities

I(X,O) 47r
Q=_ .

Eo0,) Snfl_,

and _ = ot_,(1 + ch(0))

where Eo(X ) is the extraterrestrial solar irradiance

I(_,0) Nadir radiance

0 Solar zenith angle •

Sll Rayleigh scattering phase functions 3/4 (1 + cos20)

/37tRayleigh volume atmosphere scattering coefficient (atm) -1

o_?_Ozone absorption coefficient (atm. cm) -1

ch(0) Chapman function
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the albedo for the four shortest wavelengths should lie on a straight line when £n Q is plotted

against £n _:. The £n Qs for 273.5 to 283.6nm do indeed fall on a straight line to high accuracy

for all latitudes and seasons for the threeBUV sensors, and _n Q255.5 is systematically about 5%

high at low latitudes and frequently more than 10% high at high latitudes. The excess 255.5nm

albedo can be measured for each scan directly from £n Q - £n t_ plots. Figure 5 shows the mean

logarithms of the deviation of the excess albedo with a 5% mean bias at all latitudes removed

linearly. This is an estimate of the possible contribution of nitric oxide resonance fluorescence

to this data set, and shows the standard behavior of increasing excess albedo with increasing solar

zenith angle seen in the Nimbus data sets. The data are grouped in 10° latitude bins (top) or

10° solar zenith angle bins (bottom).

The excess albedo as shown in Figure 5 has been interpreted in terms of resonance fluores-

cence of nitric oxide in the thermosphere and mesosphere. In converting from measured albedo

to implied radiance values we have used a solar flux of 70.2ergs/cm2-s-nm which is the prelimi-
i

nary Nimbus 7 255.5 nm result. We have attributed the maximum variability to NO in the thermo-

sphere, consistent with Cravens and Stewart (1978), allowing for the 105 nm NO peak to vary between

1 and about 10 x 107 cm-3. In the case of medium solar zenith angles the excess radiation was too

large to be accounted for with the NO variation in the thermosphere alone, and it is necessary to pro-

vide substantially more NO in the mesosphere than is included in the model. The indication is that

high thermospheric nitric oxide amounts are frequently accompanied by substantial enhancements

in the mesospheric nitric oxide, and probably that the deep concentration minimum usually ob-

served near 85km would be at least partially filled in by the downward transport of NO into the

mesosphere. The NO values presented here are accurate to about a factor of 10, and the point-

to-point precision is better than a factor of 2.

CONCLUSIONS AND DISCUSSION

Resonance fluorescence from nitric oxide in the mesosphere and thermosphere is shown to

provide a significant latitude varying contribution to the measured Nimbus BUV signal at



255.5nm. NO content above 50km, as well as concentrations at 105 and 60km can be estimated

from measured BUV excess 255.5nm albedo with appropriate assumptions about the latitude in-

dependent mean bias observed with the 3 BUV satellite sensors. The NO mesospheric content

is shown to increase 5 fold in this data set from middle latitudes to high latitudes presuming that

' all the excess albedo at high latitudes - normalized to 0 excess at low latitudes - is due to NO

airglow and that the thermospheric content is no larger than measured by Cravens and Stewart

(1978). Since the latitudes at which these high mesospheric NO occur coincide with latitudes of

high thermospheric NO production, it is at least possible that in these circumstances the meso-

spheric NO down to the stratopause (where this measurement technique loses sensitivity) is dom-

inated by NO production above 90km, and further then that there would be significant variations

in upper stratospheric NO due to high concentrations above 50km. The 85km deep concentra-

tion minimum in NO would be smoothed in cases where NO produced above 90km dominates

the entire mesosphere.

Alternatively high mesospheric NO amounts may be produced there directly by the same

processes that make NO in the thermosphere at these latitudes. The possibility that high meso-

sphere NO values result from enhanced vertical transport from below the stratopause cannot be

precluded, but is considered less likely due to the coincidence of the latitude of these enhance-

ments with the latitude region in which NO is efficiently produced through ion-recombination

processes.

Calculations of the albedo enhancement at middle to high latitudes beyond that observed at the

low latitudes were performed by tuning the ozone absorption coefficient at 255.5 nm differentially

from 273.5 to 287.6 nm absorption coefficients to bring £n Q255.5 onto a straight line at low lati-

tudes. This required a change of about 7% in a, which provided a linear 5% change in 255.5 nm

albedos at all solar zenith angles. This assumption was performed for computational simplicity;

however, if the mean bias indeed results from an error in the set of as then this is probably due to a

small error in wavelength determination for the ozone absorption coefficients used (Inn and Tanaka,

1953) in the region where the absorption is changing rapidly with wavelength.

9



The excess albedo is not thought to be related to high altitude aerosol distribution because

these effects would produce enhanced albedos at all the shorter BUV wavelengths. The Nimbus 7

device has less than 1% polarization sensitivity so the effect is not related to polarization phenom-

enon. The NO content measurements reported here will be upper or lower limits if the low latitude

effect producing excess albedo is actually atmospheric, and becomes less or more effective with in-

creasing latitude. The AE results require such an effect to have little or no solar zenith angle depen-

dence at low latitudes.

The mean low latitude excess albedo which we have suppressed for these calculations might also

result from fluorescence from another atmospheric species. For example, several bands from the

Schumann-Runge system of molecular oxygen absorb within each wavelength channel sampled by the

BUV. Band heads for the 7-10, 10-11 and 14-12 vibrational transitions are within the 255.5 nm

channel. An emission efficiency of approximatly 1%, 0.5% and 10% respectively for any of these

transitions would produce 1% of the measured 255.5 nm signal at 0° solar zenith angle or 20% of the

excess albedo bias. This estimate uses the emission rate factors for the Schumann-Runge bands from

Barth (1964), and presumes that 02 absorption is the major attenuation of the incoming flux so that

unit optical depth is reached where the column content of 02 is given by the reciprocal of the ab-

sorption cross section. The 02 partial pressure dependent absorption cross section is taken from

Park (1974).
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FIGURE CAPTIONS

Figure 1. Optical depth as a function of altitude for solar flux at 215nm for computational

• model using NO profile with 5 x 107cm -3 at 105km and 3.5 x 107cm -3 at 60km.

Figure 2. Model nitric oxide atmosphere used in computations with NO 5 x 107cm -3 at 105km,

as well as altitude distributions for thermospheric NO of 1 at 8 x 107cm -3 at 105km

determined to be typical upper and lower limits by the AE UV Nitric Oxide experi-

ment. For 5 x 107cm -3 at 105km, the NO content above 70km is 2.42 x 1014cm -2.

Figure 3a. Contribution function for 2km layers below 70km for light at 255.1 nm, as well as

the total integrated photon flux reaching the top of the atmosphere at 215 and

255.1 nm from altitudes down to each layer for 0° solar zenith angle for [NO] =

5 x 107cm -3 at 105km.

Figure 3b. Same as 3a, but for 60° solar zenith angle.

Figure 3c. Same as 3a, but for 70.5 ° solar zenith angle.

Figure 3d. Same as 3a, but for 78 ° solar zenith angle.

Figure 4. Resonance Fluorescence from computational model for several solar zenith angles at

215 and 255.1nm for [NO] = 5 x 107cm -3 at 105km, as well as measured Nimbus

4 BUV radiances measured on an orbit on 2 August 1972 plotted on the same scale

as the 255.1 nm airglow.

. Figure 5. Latitude dependent component of the mean excess 255.5nm albedo plotted as devia-

tion from straight line for £n Q - £n _: for Nimbus 4, 7-13 August 1970.

Figure 6. NO concentration at 105 and 60km and abundance above 50km implied by latitude

dependent mean excess 255.5nm radiation for data from Figure 5.
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BACKSCATTERED ULTRAVIOLET FROM MODEL NO ATMOSPHERE
WITH [NO]max = 5x10' cm '3 AT 105 km
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NO CONCENTRATIONS AND ABUNDANCE ABOVE 50 km
IMPLIED BY MEAN EXCESS

255.5 nm RADIATION .
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